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TRANSLATION OF A SPHERE IN A ROTATING VISCOUS FLUID: 
A NUMERICAL STUDY 
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Department of Mathematics, Indian Institute of Technologx Madm 600 036, India 

SUMMARY 

The translation of a sphere moving along the axis of a rotating viscous fluid is studied by the finite difference 
method at moderate Reynolds (up to R = 500) and Taylor (up to T = 100) numbers. Suppression of the separation 
is observed with increasing rotation parameter 1: The drag coefficient is also presented. It is observed that the drag 
coefficient is less than that with no rotation in the range 0 < N <  0.7, where N = 2T/R is the inverse Rossby 
number. The same phenomenon was observed experimentally by Maxworthy in the range 0 < N < 0.75 2 0.03. 
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INTRODUCTION 

Taylor' found that as a sphere moved slowly through a fluid in solid body rotation, a column of fluid 
was pushed ahead of the sphere as a "slug' of zero axial velocity relative to the body. In the limit of 
zero axial viscosity t h i s  column was presumed to become a cylinder, extending ahead of and behind 
the body, with generators parallel to the axis of rotation and just touching the largest cross-section of 
the body. What he saw was presumed to be the viscous modification of an ideal flow. Taylor reported 
that this behaviour appeared only when the parameter N = 2oa/U, exceeded a magnitude of about 
N = 6. Here o is the angular velocity of the fluid in solid body rotation and U, and a are the velocity 
and radius of the sphere respectively. Further observations by Lon$ demonstrated the existence of a 
train of waves downstream of the disturbing body when N was small. They apparently disappeared as 
N approached the slug flow regime. Again there were visualizations of slug flow ahead of the body and 
a strong cyclonic vortex behind. 

Maxworth$ performed experiments in a small rotating tank and verified the existence of the 
forward slug. It did not disappear when N < 6. It was much in evidence for N M 2 but in a modified 
form. He also observed a rearward slug at large N. He reported that for small values of N it rotated 
rapidly, had an oscillatory character, was much longer than the forward slug and completely modified 
the separation bubble that normally exists at the Reynolds numbers of the experiments. He also 
observed that at low N the drag is less than that with no rotation in the range 0 < N< 0.75 2 0.03, 
independently of T. For intermediate ranges of T and N Maxworthy observed that the drag is greater 
than that with no rotation. 

Recently Raghava Rao and Sekhar4 obtained forward separation of the axisymmetric flow past a 
sphere moving in a rotating fluid with the formation of an upstream separation bubble, such as 
observed by Maxworthy3 and Miles,' by using the finite difference method. They also found a vortex 
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phenomenon at the rear stagnation point. For small values of R and moderate values of T a finite 
difference solution giving the flow past a stationary and spinning sphere in a rotating fluid has been 
obtained by Raghava Rao and Sekhar.6 A region of reverse flow and vortex formation is found to occur 
near the front or rear stagnation point or both depending upon the values of R and T and the angular 
velocity of the sphere. 

In this present investigation the translation of a sphere in a rotating fluid is considered for moderate 
Reynolds and Taylor numbers. 

FORMULATION OF THE PROBLEM 

In this paper we study the steady flow of a viscous incompressible fluid past a sphere of radius u which 
is moving with a uniform translational velocity U. The undisturbed fluid rotates with constant angular 
velocity coo and the axis of rotation is taken to coincide with the line of motion. We use spherical polar 
co-ordinates (r, 6, 4)  with the origin at the centre of the sphere; since the motion is axially symmetric 
about the z-axis, all quantities are independent of 4. The velocity components (v;, vi, v;) are related 
to the streamfunction $* and the rotational velocity component R* by the relations 

* R* v; = ~ 

1 a$* v;, = ~ 

1 a** 
r sin 6 dr' r sin 6 '  vr=-- r2 sin 0 86 ' 

$* and R* are non-dimensionalized as 

$* = a2U$, R* = U2col)R, 

while non-dimensional velocity components (v,, vet v+) are obtained by dividing the dimensional 
components v: and vg by U and v: by amo. If we put r = e5, we obtain for the velocity components 

R e-5 
Vb = - 

sin 6 . 
e-5 a$ v, = -- - 

sin e at ' 
ec2C & v,=-- 
sin 6 a0 ' 

The Navier-Stokes equations governing the motion are 

~ 9 $  = -e2t[, 

where 

and $, Re-5/sin 0 and [eC5/sin 6 are the dimensionless streamfunction, angular velocity and vorticity 
respectively. The boundary conditions are 

= 0, at 5 = 0, a$ R = O ,  $=O, - at 
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NUMERICAL METHOD 

The finite difference method is used to solve the governing equations. The finite difference grid is 
shown in Figure 1, where 5 = constant are circles, 6 = constant are radial lines and nodal points are the 
points of intersection of these circles and radial lines. The central difference approximation to the 
governing equations requires severe underrelaxation for convergence when solving the finite difference 
equations by iterative techniques. The use of upwind differences in approximating the non-linear terms 
ensures diagonal dominance, which in turn ensures the convergence of the iterative procedure even at 
high Reynolds numbers. In the present study, second-order derivatives are approximated by central 
differences and non-linear terms are approximated by an upwind difference scheme which can be 
written as 

where f = R or [, F = $, Fe = dFId6 and f i  = dfla<. If Fo > 0, fr is approximated by backward 
differences; if Fe < 0, is approximated by forward differences and Fe is approximated by central 
differences. The coupled equations are solved by the block SLOR method and the resulting algebraic 
equations are solved by the SOR method. The initial solution is taken as $ = 0, [ = 0 and R = 0 at all 
inner grid points. In finding the solutions for higher values of R and T, the solutions obtained for lower 
values of R and Tare used as starting solutions. Without resorting to underrelaxation, we could apply 
the Gauss-Seidel iterative method for the Reynolds numbers R = 5 ,  20 and 40 for all values of the 
Taylor number T Numerical solutions have been obtained for the values of the parameters given in 
Table I. 

The order of the solution procedure is as follows. First we solve equation (1) for SZ, then, using this 
in equation (3), we solve for [; finally, this is used to solve equation (2) for $. This completes one 
iteration. The above procedure is repeated until it satisfies the equation 

I f ( n + ' )  - f I -  < 0.0001, 

where f = $, [ or R and n is the iteration number, at all interior grid points. 

0 

Figure 1.  Finite difference grid 
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Table I. Parameters used in the calculations 

R T h k 5, Relaxation parameter 

5 0, 0.5, 1, 2, 2.5 0.05 xl45 2.05 No relaxation parameter 
20 0, 5 0.05 nl45 2-05 No relaxation parameter 
40 0, 5,  8, 12 0.05 d 4 5  2-05 No relaxation parameter 

100 0, 10, 20 0.05 d60 2-5 1, 0.8, 0-5 
500 0, 40, 60, 100 0.05 d60  2.5 1, 0.8, 0.5, 0-4 

RESULTS 

The flow is studied first in the case of T = 0 and then upon increasing the value of T (Figures 2-12). In 
the case of T = 0 the separation starts at R = 20 (Figure 2(a)) and the length of the wake grows slowly 
with increasing R (Figures 4(a), 7(a) and 9(a)) as found by Fornberg.' Many interesting features are 
observed at moderate values of the Taylor number. 

The wake which is found in the case of T = 0 disappears slowly as the rotation parameter T 
increases. At R = 20 and 40 the wake completely disappears at T = 5 and 12 respectively (Figures 3(a) 
and 6(a)). This phenomenon has been observed in the magnetohydrodynamic flow past a circular 
cylinder by several authors.8-" At R = 100 suppression of the separation is also seen (Figures 7(a) and 
8(a)). At R = 500 and T = 60 the separation is completely modified as a vortex which is attached to the 
body (Figure 1 l(a)), and as T increases, this vortex moves upwards (Figure 12(a)). 

The drag coefficient CD is the sum of two components: one arising from the viscous force (C,) and 
the other from the pressure distribution over the sphere (Cp). These components can be written in polar 
co-ordinates (r, 0) as 

cp = 2 j (i + g) sin2 e do. 
r =  1 R 

0 

The drag coefficient is calculated for R = 5, 20 and 40 in the range 0 5 N I 0.7, and for R = 100 
and 500 in the range 0 5 N 5 0.4 (Figure 13). It is found that the drag coefficient is less than that with 
no rotation in the range 0 < N <  0.7 (see Tables II-VI for drag coefficients), independently of I: The 
same phenomenon was observed by Maxworthy3 in the range 0 < N < 0.75 2 0.03, independently of 
I: This result can be explained physically by considering a weakly rotating fluid flowing over the 
sphere plus a rear recirculation region similar in shape to that in a non-rotating fluid, i.e. viscous 
separation takes place before the equator and the bubble has a larger transverse dimension than the 
sphere. The outward flow of rotating fluid over this bubble causes it to rotate at a rate less than the 
applied value, the pressure in the bubble increases and the drag on the body decreases. For N 2 0.7 the 
drag coefficient is greater than that with no rotation (within the range of our observations). The values 
of the drag coefficients (C,) and angles of separation (0,) are given in Tables II-VI. 

The effect of the infinite distance is studied in the case of T = 0 for R = 20,40 and 500. The values 
of the drag coefficients for various 5, are given in Table WI. 

It may be noticed from Table VII that as 5, increases, the present results for T = 0 become closer to 
the results given in References 7, 12 and 13. However, it may also be noticed from Table 8 that a 
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Figure 3. (a) Streamlines and @) vorticity lines at R = 20, T = 5 

Figure 4. (a) Streamlines and @) vorticity lines at R = 40, T = 0 

Figure 5. (a) Streamlines and @) vorticity lines at R = 40, T = 8 

(b) 
I# 

- 

0 1 1  
-6  0 6 - I  0 

Figure 6. (a) Streamlines and @) vorticity lines at R = 40, T = 12 
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(b) 

~( - 6  Figure 7. (a) Streamlines and 6 0 (b) vorticity lines at R = 100, T = 0 
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Figure 8. (a) Streamlines and (b) vorticity lines at R = 100, T = 20 

Figure 9. (a) Streamlines and (b) vorticity lines at R = 500, T = 0 

Figure 10. (a) Streamlines and (b) vorticity lines at R = 500, T = 40 

Figure 1 1. (a) Streamlines and (b) vorticity lines at R = 500, T = 60 
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1 

Figure 12. (a) Streamlines and (b) vorticity lines at R = 500, T = 100 

Table 11. R = 5, {, = 2-05 

T N Jenson” Dennis and WalkerI3 

0 0 - 4.5621 3.975 3.605 
0.5 0.2 - 4.4686 - - 
1 0-4 - 4.1870 
1 *5 0.6 - 3.8777 
1-75 0.7 4.0336 
2 0.8 - 4.4949 - - 

- 5.7307 - - 2.5 1 

- - 
- - 

- - - 

Table 111. R = 20, trn = 2.05 

T N (deg) CD Jenson” Dennis and WakerI3 
8s 

0 0 24 1.7796 1.473 
2 0.2 20 1.7382 - 
5 0-5 - 1 -4902 - 
6 0.6 - 1.3332 - 

7 0-7 1.4291 - - 

Table I\! R = 40, {, = 2.05 

0 0 36 1.1434 0-93 1 
8 0.4 32 1 ~0240 - 

10 0.5 - 0-9467 - 
- 0.8322 - 12 0.6 
- 0.9305 - 14 0.7 
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Table V R = 100, 5, = 2.5 

T N CD Fomberg7 

0 
5 

10 
20 

0 
0.1 
0.2 
0.4 

51 
51 
51 
57 

0-5953 
0.5932 
0.5890 
0.4937 

Table VI. R = 500, <, = 2.5 

6 s  
T N CD 

0 
40 
60 

100 

0 
0.16 
0-24 
0.4 

66 
66 
18, 69 
36, 75 

0.2682 
0-2662 
0.2617 
0.2198 

Table VII. Drag coefficients for various 5, 

R 
5, = 2.5 5, = 2-75 5, = 3.0 

5, = 2.05 k = 11/60 k = 11/60 k = d60 

20 
40 

500 

1.7796 
1.1434 
- 

1.7278 
1.1047 
0.2682 

- 
- 

0.2627 
- 

0-2588 
~~ 

Table VIII. Variation in CD for R = 40 with the position of the outer boundary conditions at various values of T 

5, T=4  T = 5  F4 

2.05 
2.25 
2-5 

1.1130 
1.0935 
1 -0944 

1 -0970 
1 ~0809 
1 -0892 

1 -079 1 
1.0630 
1.0825 

smaller value of 5, is needed to obtain satisfactory results as T increases, which is also mentioned by 
Dennis et all4 for R = 0.12 and T = 0*12,0-25 and 0.5. In the present investigation we could not go 
beyond N >  0.4 for R = 100 and 500 since we could not get the required convergence of The 
values of the drag coefficients for N = 0*5,0-6 and 0.7 at R = 100 and 500 are extrapolated by using 
Newton's backward interpolation formula to draw the graphs between R and C, for different N (see 
Figure 13). From Figures 1 l(a) and 12(a) it is clear that the lower separation point moves faster than 
the upper separation point. Thus, as N increases further, these separation points may coincide with each 
other, and as N increases further still, this "combined' separation point may even detach from the body. 
The vorticity on the surface of the sphere is shown in Figures 14 and 15 for R = 40 and 500 
respectively. 
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Figure 13. Drag coefficient versus Reynolds number 
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Figure 14. Surface vorticity at R = 40 
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Degrees 

Figure 15. Surface vorticity at R = 500 

ACKNOWLEDGEMENTS 

This investigation was carried out under CSIR project 25/54/90-EMR-11. T.W.S. is an SRF in the 
above project. The authors are gratehl to CSIR-EMR- I1 for financial assistance. 

REFERENCES 

1. G. I. Taylor, ‘The motion of a sphere in rotating liquid’, Pmc. R. Soc. Lond. A ,  102, 180 (1922). 
2. R. R. Long, ‘Steady motion around a symmetrical obstacle moving axis of a rotating fluid’, 1 Met., 10, 197 (1953). 
3. T. Maxworthy, ‘The flow created by a sphere moving along the axis of a rotating, slightly viscous fluid’, 1 Fluid Mech., 40, 

4. C. V Raghava Rao and T. V S. Sekhar, ‘Numerical solution of the slow translation of a sphere moving along the axis of a 

5. J. W. Miles, ‘Boundary-layer separation on a sphere in a rotating flow’, 1 Fluid Mech., 45, 513 (1971). 
6. C. V Raghava Rao and T. V: S. Sekhar, ‘The flow past a spinning sphere in a slowly rotating fluid at small Reynolds 

7. B. Fornberg, ‘Steady viscous flow past a sphere at high Reynolds numbers’, 1 Fluid Mech., 190, 471 (1988). 
8. S. Leibovich, ‘Magnetohydrodynamic flow at a rear stagnation point’, 1 Fluid Mech., 29, 401 (1967). 
9. J. Buckmaster, ‘Separation and magnetohydrodynamics’, J Fluid Mech., 38, 481 (1969). 

453 (1970). 

rotating viscous fluid’, Int. 1 Comput. Fluid m., 1, 351 (1993). 

numbm-a  numerical study’, Int. 1 Eng. Sci., 31, 1219 (1993). 

10. J. S. Bramely, ‘Magnetohydrodynamic flow past a circular cylinder 11’, ZAME 26, 203 (1975). 
1 1. C. V Raghava Rao and T. V S. Sekhar, ‘Magnetohydrodynamic flow past a circular cylinder-a numerical study’, submitted. 
12. V G. Jenson, ‘Viscous flow round a sphere at low Reynolds numbers (<40)’, Pmc. R. Soc. A ,  249, 346 (1959). 
13. S. C. R. Dennis and J. D. A. Walker, ‘Calculation of the steady flow past a sphere at low and moderate Reynolds numbers’, 1 

Fluid Mech., 48, 771 (1971). 
14. S. C. R. Dennis, D. B. Ingh& and S. N. Singh, ‘The slow translation of a sphere in a rotating viscous fluid’, 1 FluidMech., 

117, 251 (1982). 




